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A new method for system identi"cation is proposed that is based on "tting the theoretical
probability density function (PDF) for the time between zero crossings to a measured
distribution of the crossing interval times. Using the theory "rst developed by Rice, an
approximate closed-form expression for the probability density of the time between zero
crossings of a linear single-degree-of-freedom system subject to a white noise excitation is
obtained. The PDF is a function of the natural frequency and damping ratio of the system,
and is accurate for a lightly damped system for time intervals up to the natural period of the
system. To estimate the system natural frequency and damping ratio, the PDF is "tted to
a histogram of measured crossing interval times, using the Levenberg}Marquardt
non-linear least-squares technique. The approach is demonstrated using simulated data for
systems with natural frequencies of 0)5, 1)0 and 2)0 Hz and damping ratios of 1, 2)5, 5 and
10%. The method is found to provide good results for the full range of system parameters
studied, with errors in the predicted frequency of less than 1)5% and errors in the predicted
damping ratio, on an average, less than 7%. The new method is intended to take advantage
of technology that now exists in advanced low cost, battery operated, stand-alone
instrumentation systems, and will be particularly bene"cial in studies of large civil
structures.

( 2001 Academic Press
1. INTRODUCTION

Researchers and engineers are continually working to add to the database of measured
natural frequencies, damping ratios and mode shapes of tall buildings, long span bridges
and other #exible structures. To do this, any number of traditional methods of system
identi"cation may be used with ambient or forced vibration acceleration measurements of
the structure under consideration. Some of the classical methods include least squares,
maximum likelihood and extended Kalman "lter, all of which are based on the analysis of
a continuous time history of data. An excellent review of these classical techniques, as they
relate to structural engineering, was presented by Imai et al. [1]. The data gathered from full
scale ambient vibration surveys (AVS) of large structures can be used to verify analytical
models, calibrate numerical procedures, design similar structures, and detect structural
damage [2].

While they can be extremely useful, ambient vibration surveys of large civil structures are
only rarely conducted. One reason for this is the high cost and labor associated with
a comprehensive test, which is directly correlated to the size of the test &&specimen''.
Full-scale civil &&specimens'' (i.e., building, bridge or tower) are generally of the order of
hundreds or thousands of meters in length or width. Using traditional sensors and
recording devices the set-up time needed to record just a few minutes of data can take days
or even weeks. Size also has an impact on the number of transducers that can be deployed,
0022-460X/01/240577#13 $35.00/0 ( 2001 Academic Press
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the number of di!erent test con"gurations that one can use, the amount of data that is
collected, and ultimately the quality of the identi"ed properties of the system. As a result,
vibration surveys of large civil structures are not routinely conducted.

Recent advances in sensor and microprocessor technology may soon change this
situation. Advanced instrumentation systems have recently been developed that record,
process and store data in local memory. These &&intelligent'' instruments are small, have
on-board microprocessors and storage media, can be battery operated, and are intended to
operate in a stand-alone mode free of cabling and an external recording device. There are
instruments that can record and store a continuous time history of measured data, much
like a traditional sensor and recording system. They have the advantage that they do not
require cables and an external data acquisition system, and the data collected is amenable to
traditional methods of system identi"cation.

Another very unique instrumentation system, referred to here as an &&acceleration peak
meter'', records and stores only the peak acceleration of a shock event. The impetus for
development of this instrument was to monitor cargo as it is shipped around the world. In
this application, the peak meter is mounted on a shipping container at the point of
departure, and con"gured to trigger whenever the cargo experiences a shock above
a speci"ed threshold. While in route, the system waits for a trigger due to some type of
shock loading. Once triggered, it records and stores only four data values from the event:
peak acceleration, time at which the trigger threshold was exceeded, change in velocity and
the duration of the event (time between the up- and down-crossing of the threshold). The
actual time history of the event is discarded. The instrument then re-arms itself and waits for
the next trigger. By doing this it compiles a history of the shocks experienced by the cargo
during its journey, storing only the most important information. Once the cargo reaches its
"nal destination the data stored in the instrument is down loaded and interrogated and
used to help explain any damage that might be observed in the cargo. The device is
compact, battery operated, and relatively inexpensive. Although originally developed for
monitoring cargo, the peak meter technology may be exploited for system identi"cation of
large civil structures, with perhaps signi"cant bene"ts.

These new instruments, and other wireless technologies, have great potential for use in
vibration monitoring of large civil structures. However, in order to take advantage of some
of them, new methods for system identi"cation need to be developed that are tailored to the
capabilities of the system. To take advantage of the amplitude and threshold crossing
interval data provided by the acceleration peak meter, a new method for system
identi"cation has been developed that is based on "tting the theoretical probability density
function (PDF) for the time between zero crossings to the measured distribution of the
crossing interval times.

Presented in the paper are the results of a study, the objective of which was to develop
a method for system identi"cation that is based on the distribution of time between zero
crossings. In the following, a brief overview of the proposed methodology, the theory,
a description of the numerical simulations used to test the methodology, followed by the
results and discussion are presented.

2. METHODOLOGY

The method proposed is based on having only a record or ensemble of the zero crossing
times from ambient vibration measurements of a structure. For now, scope is limited to
determining the natural frequency and damping ratio of a linear single-degree-of-freedom
(s.d.o.f.) system, subject to a white noise excitation (a common assumption in AVS of large
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civil structures). Future work will extend the method to include multi-degree-of-freedom
systems and the determination of mode shapes.

Consider a linear s.d.o.f. system, for which the governing equation of motion is

xK#2fu
n
xR #u2

n
x"f (t)/m, (1)

in which u
n
is the natural frequency, f the damping ratio, m the mass, and x, xR and xK denote

the displacement, velocity and acceleration of the system respectively. The force f (t) is
assumed to be a stationary white noise excitation with constant power spectral density, S

0
.

The response of the linear system is a stationary random process; an example of the
response is shown in Figure 1. For a lightly damped structure, the time history resembles
simple harmonic motion, with an average frequency equal to u

n
and a randomly varying

amplitude.
From the measured time history the zero crossing times are identi"ed, as shown in

Figure 1. From these, the time between successive zero crossings is calculated, i.e.,
D¹

i
"¹

i`1
!¹

i
. Note that D¹ is a random variable; for a lightly damped system, D¹

should be approximately equal to ¹
n
/2"n/u

n
. The mean and variance of D¹

i
, however,

will vary depending on the damping in the system.
Using the D¹

i
collected from a sample record, a histogram of the time between zero

crossings is constructed. The histogram is indicative of the probability density function of
the time between crossings, and presumably would be a function of the natural frequency
and damping ratio of the system. Provided the theoretical PDF can be determined in closed
form, and in terms of the system properties, then u

n
and f can be determined by "tting the

theoretical distribution to measured distributions. This is the basis for the system
identi"cation technique. In the next section, the theoretical PDF for the time between zero
crossings is derived.

2.1. THEORETICAL PDF OF TIME BETWEEN ZERO CROSSINGS

Researchers have been interested in the statistics of stochastic processes for many years.
A tremendous amount of work has been focused on understanding the statistics of
threshold crossings and the distribution of extrema magnitude. A much more complex
Figure 1. Sample response and identi"cation of the zero crossing intervals for a single-degree-of-freedom system
subject to white noise.
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problem deals with the statistics of the time between threshold crossings and the time
between extrema. Blake and Lindsey [3] provide an excellent review of research on the level
crossing problem.

In 1945, Rice [4] derived an approximate expression for the PDF of the zero crossings
intervals of a random noise current, I. Rice's work, summarized below, is used as the basis
for deriving an approximate expression for the PDF of time between zero crossings used in
the system identi"cation procedure.

Rice derived the following expression for the probability of noise current, I, passing
through zero in the interval q, q#dq with a negative slope, when it is known that I passes
through zero at q"0 with a positive slope:

P (q)"(dq/2n)[t
0
/!tA

0
]1@2[M

23
/H](t2

0
!t2q )~3@2[1#H cot~1(!H )], (2)

in which
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]~1@2, (3)
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In the matrix above, tq"t (q) is the autocorrelation function for the noise current I, ( ) )@
denotes di!erentiation with respect to q, and a subscript 0 denotes evaluation at q"0.
Evaluating the cofactors yields

M
22
"!tA

0
(t2

0
!t2q )!t

0
(t@q)2, M

23
"tAq (t2

0
!t2q )#tq(t@q )2. (5, 6)

In these expressions, Rice chose 0)cot~1(!H))n, the value n being taken at q"0 and
n/2 as qPR. Following the general derivation, Rice derived an approximate closed-form
expression for the PDF of zero crossings for an ideal band pass "lter.

The objective here is to determine the probability density function of the time between
zero crossings of displacement of the linear s.d.o.f. system. This can be derived from
equation (2) when the autocorrelation function in equation (4) corresponds to the
autocorrelation for displacement of the s.d.o.f. system.

The power spectral density of displacement of the s.d.o.f. system subject to a white noise
excitation with spectral amplitude S

0
is

S
x
( f )"DH( f ) D2S

0
"S

0
f 4
n

/k2 D f 4#(4f2!2) f 2
n

f 2#f 4
n

D , (7)

in which H( f ) is the complex frequency response function for the system and f
n

is the
natural frequency in Hz. The autocorrelation function for displacement is determined from
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equation (7) using the Wiener}Khinchine relation, i.e.,

t
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x
( f ) cos(2nq f ) d f. (8)

Substituting equation (7) into equation (8) and evaluating yields
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The function F
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n
, f) and similar functions that follow has been introduced to represent the

expression to the right of equation (9) that is only a function of the natural frequency f
n
and

the damping ratio f.
The "rst and second derivatives of t
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Evaluating equations (9)}(11) at q"0 yields
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Substituting equations (9)}(14) into the equations for M
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yields
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Substituting equations (17) and (18) in the expression for H and simplifying yields
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Finally, substituting equations (9), (12), (14), (16) and (19) into equation (2) and simplifying
yields
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Equation (20) is an approximation of the probability density function of the time between
zero crossings of displacement of a linear s.d.o.f. system subject to a stationary white noise
input. Details are not presented but it can be shown that the coe$cients (S

0
/k2) completely

cancel in equation (20), i.e., the function is independent of the spectral amplitude of the white
noise input, as would be expected for a linear system; therefore, equation (20) is only
a function of f

n
and f.

Equation (20) is plotted in Figure 2 for f
n
"1)5Hz and f"3%, versus q/¹

n
. Note that

the density function has peaks near q"0)333"0)5¹
n
, 1)0"1)5¹

n
, 1)666"2)5¹

n
, and

2)333"3)5¹
n
s, and multiples thereof, in which ¹

n
is the fundamental period of the system.

The approximation becomes invalid for large q, as noted by the "nite asymptote at large q.
The density function exceeds the probability that x will cross-zero at q"0 and in q, q#dq,
without any other zero crossings in between, since it includes all of the latter, plus any that
have an even number of crossings between 0 and q, q#dq [4]. For a lightly damped s.d.o.f.
system, however, it is unlikely that an even number of multiple crossings will take place
between q"0 and q"¹

n
/2 (or for that matter, any number of multiple crossings). McFadden

[5] generalized the work of Rice to that of non-Gaussian noise and in doing so argued that
for a narrow band spectrum, Rice's equation is a close approximation up to 1)5¹

n
, i.e., the

practical range of q. Therefore, one can assume that equation (20) is a reasonable
approximation to the PDF of time between zero crossings, out to a q of approximately ¹

n
.

For the identi"cation technique, equation (20) is used only out to about q"¹
n
.

Figure 2. Theoretical probability density function for the time between zero crossings [equation (20)].



Figure 3. Probability density function for varying natural frequency and damping ratios: (a) f"3%;
(b) f

n
"1)5Hz.

SYSTEM IDENTIFICATION 583
Equation (20) is plotted in Figure 3 for a range of frequencies and damping ratios.
Presented in Figure 3(a) is a plot of the PDF for various f

n
and a damping ratio of f"3%;

presented in Figure 3(b) is the PDF for "xed f
n
"1)5 Hz and damping ratios of f"1, 3 and

10%. Note that the PDF closely resembles a normal distribution, particularly for lightly
damped systems. For a lightly damped system, the distribution is very narrow and is
concentrated around the mean of approximately ¹

n
/2. The distribution becomes much

broader as the damping ratio is increased and the peak is not well de"ned. There is also
a very small decrease in the mean value with increasing f.

The trends noted in the probability density function in Figure 3 that occur with changes
in frequency and damping ratio can be explained by considering the power spectrum of the
system response for varying parameters. Consider "rst the result shown in Figure 3(a); for
"xed f, the peak in the PDF shifts to q+¹

n
/2 and becomes sharper with increasing f

n
.

The shift to q+¹
n
/2 is obvious since the predominant frequency of the response is the



584 H. W. SHENTON AND L. ZHANG
natural frequency in each case. Recall, however, that the half-power bandwidth of the
response of a linear, viscously damped, s.d.o.f. system is approximately equal to
2fu

n
"4nf f

n
, and the resonant amplitude of the spectrum does not change with frequency.

This implies that the energy of the system response at f+f
n
, increases with increasing f

n
.

Therefore, the system with the higher natural frequency has more energy at the natural
frequency, which tends to increase the likelihood that the next zero crossing will be closer to
¹

n
/2. This in turn results in a sharper PDF. Finally, consider the results shown in Figure

3(b); for "xed f
n
, the PDF decreases and becomes less sharp with increasing damping. In this

case, while the half-power bandwidth does increase with increasing damping, the amplitude
of the response decreases. This decreases the energy of the system response at f+f

n
and

results in a more broadbanded response. Therefore, the likelihood of the next zero crossing
occurring at ¹

n
/2 decreases and the resulting PDF decreases.

The theoretical PDF of the time between zero crossings is strongly dependent on the
dynamic characteristics of the system. The procedure for identifying the dynamic
characteristics of the system is based on "tting the measured distribution to the theoretical
density function in equation (20). The approach is illustrated in the next section using
simulated data.

3. NUMERICAL SIMULATIONS

To test the proposed method for system identi"cation, simulated response time histories
were generated for an s.d.o.f. system subject to a stationary white noise excitation. The
theoretical probability density function presented in equation (20) was then "tted to the
simulated D¹ distributions to yield the estimated natural frequency and damping ratio of
the system. Details of the procedure are described below.

Response time histories were generated by solving equation (1) using MATLAB, for
a random white noise excitation. Time histories were generated for a total of 12 s.d.o.f.
systems, with natural frequencies equal to 0)5, 1)0 and 2)0Hz, and damping ratios of 1, 2)5,
5 and 10%.

The force excitation was generated from a sum of harmonics with random phase angles,
i.e., using the relation

f (t)"sin(u
0
t#/

0
)#

n
+
i/1

sin(iDut#/
i
). (21)

In the previous equation, u
0

is the starting frequency, Du is the frequency resolution and /
i

is a random phase angle in the range 0}2n that occurs with uniform probability. In that it is
not possible to generate a true white excitation, a band-limited force was created with
frequencies ranging from 0)01 to 19)99Hz [u

0
"0)0628 rad/s (0)01Hz), Du"0)125 rad/s

(0)02Hz) and n"999 in equation (21)]. Note that the natural frequencies of the s.d.o.f.
systems considered were all well within the frequency band of the force excitation. A total of
24 unique force time histories were generated, each with a duration of 60 s and a time
increment of 0)01 s: multiple force time histories were used to facilitate the post-processing
of the data. All of the force time histories were scaled to have an r.m.s. value of 1.

From the computed time histories of response, the zero crossings were identi"ed and the
D¹

i
between crossings determined. In extracting the crossing information, the "rst 10 s of

each record was ignored so that the distributions would not be a!ected by the transient
response of the system. A minimum of 1200 zero crossings intervals were compiled for each
system. The D¹ 1s collected from the di!erent time histories, corresponding to the di!erent



Figure 4. Sample histogram of zero crossing intervals for f
n
"1 Hz and f"2)5%.
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forces time histories, were combined into one data set, as though they were obtained from
a single, long response time history. A sample histogram for f

n
"1Hz and f"2)5% is

shown in Figure 4.
Histograms of the crossing intervals were created and normalized such that the total

count was one (i.e., the area under the histogram was one). Equation (20) was then "tted to
the histogram of simulated data using the Levenberg}Marquardt non-linear least-squares
approach [6], to yield the estimate of the natural frequency and damping ratio of the
system. The "tting was conducted using a commercial data analysis and plotting program,
running on a desktop personal computer. Initial estimates of the unknown frequency and
damping ratio were needed to start the process; the sensitivity of the method to these initial
guesses is discussed later.

4. RESULTS AND DISCUSSION

Presented in Figures 5}7 are the results for the systems with natural frequencies of 0)5, 1)0
and 2)0 Hz respectively. Presented to each "gure are the results for the four di!erent
damping ratios: 1, 2)5, 5 and 10%. The simulated distributions are shown by the underlying
histogram; the results of "tting equation (20) to the simulated distribution is shown by the
solid curve. The estimated properties are indicated in the "gure caption by f

fit
and f

fit
. The

results of the system identi"cation are summarized in Table 1, in which are presented the
actual properties, the estimated properties, the error in the predicted frequency and
damping ratio, and the correlation coe$cient (R).

In general, there is a very good agreement between the true properties and the predicted
natural frequency and damping ratio. The "ts are very good for all values of f

n
and f as

indicated by the correlation coe$cient in the table. The results are slightly better, however,
for higher values of the natural frequency and lower values of damping. One reason for this
is the number of crossing intervals in the histogram. With the 24 time histories, the number



Figure 5. Histograms of zero crossing intervals and "tted PDF for f
n
"2)0 Hz and varying damping ratios:

(a) f"1%, f
fit
"1)998Hz, f

fit
"1)02%; (b) f"2)5%, f

fit
"1)999Hz, f

fit
"2)47%; (c) f"5%, f

fit
"2)002Hz,

f
fit
"4)90% and (d) f"10%, f

fit
"1)995Hz, f

fit
"9)93%.
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of crossing intervals obtained from the simulations was higher for the higher natural
frequencies: &4800 for f

n
"2 Hz, versus &2400 for f

n
"1)0 Hz, versus &1200 for

f
n
"0)5 Hz. Thus, because of the larger sample size, the histograms for the higher natural

frequency are somewhat smoother and therefore lead to better "ts. Similarly, for the same f
n
,

the larger the variance of the time intervals, the greater the damping ratio. Therefore, with
the same bin size and approximately the same number of crossing intervals, the histogram
for the lower damping ratio is smoother than the one for the higher damping ratio and
therefore leads to a better "t.

In performing the curve "ts, initial estimates of the system properties are needed to start
the process. Once the histogram is constructed, an initial guess for the natural frequency
becomes evident from the peak in the histogram near 0)5¹

n
. At that point, the data can be

re-binned to a convenient resolution, which for the results shown in Figures 5}7 was taken
to be ¹

n
/50, and then normalized such that the area under the histogram is one. An initial

value for the damping ratio must then be selected. For a typical civil structure, this would be
in the range of 1}5%. Tests were conducted to examine the sensitivity of the results to the
initial estimates. For these informal tests, the initial guess for the frequency was varied from
the true values by$20% and the initial guess for the damping ratio was varied by more
than 100%. Results show that the "t procedure is more sensitive to the initial estimate of the
natural frequency than the initial estimate of the damping ratio. Results converged to the
true values for initial frequencies within 10% of the true value, and the damping ratios that
di!ered from the true value by more than 100%. In a practical application, the sensitivity to



Figure 6. Histograms of zero crossing intervals and "tted PDF for f
n
"1)0 Hz and varying damping ratios:

(a) f"1%, f
fit
"0)997Hz, f

fit
"0)93%; (b) f"2)5%, f

fit
"0)995Hz, f

fit
"2)48%; (c) f"5%, f

fit
"0)998Hz,

f
fit
"5)24% and (d) f"10%, f

fit
"0)986Hz, f

fit
"9)70%.
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the initial frequency should not be a problem since an accurate estimate of f
n

can be
obtained just from the histogram.

5. CONCLUSIONS

A new method for system identi"cation has been developed that is based on "tting the
theoretical probability density function (PDF) for the time between zero crossings to
a measured distribution of the crossing interval times. Using the theory "rst developed by
Rice, an approximate closed-form expression for the probability density of the time between
zero crossings of a linear s.d.o.f. system subject to a white noise excitation was obtained. The
approximate distribution is expected to be accurate for a lightly damped system, up to
a crossing interval length equal to the natural period of the system.

The identi"cation procedure is based on having an ensemble of measured interval
crossings for a s.d.o.f. system subject to a stationary white noise excitation (a typical
assumption for an ambient vibration survey of a large civil structure). The theoretical PDF
is then "t to the histogram of measured crossing intervals, using the non-linear least-squares
approach of Levenberg}Marquardt to yield the estimate of the natural frequency and
damping ratio.

The procedure has been tested using simulated data. Response time histories were
generated for a s.d.o.f. system, for a range of frequencies and damping ratios. The system
properties were then estimated using the distribution of zero crossing intervals. Results have
been shown to be in good agreement, with the maximum error in the predicted frequency of



Figure 7. Histograms of zero crossing intervals and "tted PDF for f
n
"0)5 Hz and varying damping ratios:

(a) f"1%, f
fit
"0)499Hz, f

fit
"1)17%; (b) f"2)5%, f

fit
"0)498Hz, f

fit
"2)45%; (c) f"5%, f

fit
"0)496Hz,

f
fit
"4)77% and (d) f"10%, f

fit
"0)499Hz, f

fit
"8)20%.

TABLE 1

Frequencies and damping ratios estimated from simulated data

f
n
(Hz) f% f

fit
(Hz) %Error f

fit
% %Error R

2)0 1)0 1)998 0)1 1)02 2)0 0)999
2)0 2)5 1)999 0)05 2)47 1)2 0)999
2)0 5)0 2)002 0)1 4)90 2)0 0)997
2)0 10)0 1)995 0)25 9)93 0)7 0)990

1)0 1)0 0)997 0)3 0)93 7)0 0)999
1)0 2)5 0)995 0)5 2)48 0)8 0)997
1)0 5)0 0)998 0)2 5)24 4)8 0)993
1)0 10)0 0)986 1)4 9)70 3)0 0)986

0)5 1)0 0)499 0)2 1)17 17 0)995
0)5 2)5 0)498 0)4 2)45 2 0)995
0)5 5)0 0)496 0)8 4)77 4)6 0)990
0)5 10)0 0)499 0)2 8)20 18 0)977
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less than 2%, and the error in the predicted damping ratio, on an average less than 7%. In
a few cases, the predicted damping ratios were in error by as much as 19%, but this can be
attributed to the number of crossing intervals (i.e., count) and the higher damping ratio.

For now, scope has been limited to determining the natural frequency and damping ratio
of a linear s.d.o.f. system. Work is continuing to develop a procedure for estimating the
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mode shape and also to verify the procedure experimentally. Future work could extend the
procedure to include or make use of the distribution of time between local maxima and
minima, and the distribution of crossing intervals for threshold values other than zero.

The proposed method for system identi"cation is intended to make use of new advanced
sensors and instruments that have been developed in recent years, namely a stand-alone
digital peak meter. The methodology, in conjunction with the peak meter, has the potential
to greatly reduce time, labor and cost of conducting ambient vibration surveys of large civil
structures. This will help in expanding all the important database of measured properties for
large civil structures.
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